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In a recent paper (1) Lukashevich has summarized his views on the roar- 

rangement and disproportionation of aromatic hydrazo compounds. These views 

deny the validity of current interpretations of the mechanism of the acid- 

catalyzed benzidine rearrangement, interpretations which have been based on 

extensive kinetic studies by several groups. Lukashevich's views on acid- 

catalyzed disproportionation are also in conflict with kinetic evidence, and, 

like those on rearrangement are in error. These views are discussed and con- 

trasted with experimental facts in the following pages. 

Rearranqement. 

The current, generally-accepted interpretation of acid-catalysis in the 

benzidine rearrangement is expressed in equation 1 (X,3). This equation says 

-d(Hyd)/dt = k,lHyd]iH+l + kg LHydlLH+12 . . . . * . . . . (1) 

that the disappearance of the hydrazo compound (Hyd) is first-order in hydrazo 

compound, and may be both first- and second-order in acid, The facts of the 

equation have been well documented. Some hydrazo compounds have been shown 

to rearrange solely by first-order acid catalysis (4); in those cases the 

importance of the second tern in equation 1 was negligible. Some hydrazo com- 

pounds have been shown to rearrange solely by second-order catalysis (4-9); in 

those cases the importance of the first term in equation 1 was negligible. 

Last, some hydrazo compounds have been shown to rearrange by both first-and 

second-order acid catalysis, and with some of these compounds the transition 

4043 



4044 No.41 

from first- to second-order has been clearly shown as taking place with in- 

creasing acidity (4.10). The details of the steps that are summarized by 

equation 1 have been elucidated by studies of kinetic- and solvent-isotope 

effects (4.11). The steps are the fast, reversible protonations (equations 

2 and 4) and the slow rearrangement of the mono- and di-protonated molecules 

(equations 3 and 5). That is, acid-catalysis has been shown to be specific 

acid-catalysis for both the one- and the two-proton processes. (Whether or 

not intermediates are involved in the steps 3 and 5 is not relevant to the 

present discussion. The question is discussed in reference 13.) 

+ 
RNl’NHP, + ti TO 

3 
= RNHNH$ + Hz0 (fast) . . . . . . . (2) 

-+ (product)+ (sioa) . . . . . ..(3) 

RNHh,R + H3+0 
+ 

G RfiH2NH2R t H20 (fast).......(4) 

.t t 
PNL12NH,R + (product) tt ( 5 low) . . . . . . . (5) 

Lukashevich’s view (1) is tha-t the acid-catalyzed rearrangements do not 

occur as described by equations 2-5. Lukashevich’s view is based primarily 

on the results of his work with the salts of aromatic hydrazo compounds, pub- 

lished in more detail in earlier papers, one of which, as a matter of fact, is 

entitled: “evidence refuting double protonation of hydrazo compounds during 

rearrangement” (1%). The essence of Lukashevich’s view is apparently based on 

the f silure to obtain di-acid salts by treating hydrazo compounds with hydrogen 

chloride or hydrogen bromide in non-polar solvents such as ether or a mixture 

of benzene and tolucne. Some hydrazo cnmpounds formed an isolable salt, but 

the salt s.rar: al:tays the cone-acid salt. A mono-protonated hydrazo molecule is 

regarded as being too !::eakly basic to accept another proton, so that the 

theory ?A:hich incorporates the steps shol;;n in equations J and 5 is regarded as 

‘Co.ng. The fallacy in this argument must be evident. It is not uncommon in 

chemical react’,ns that an intermediate is detectable (kinetically or other- 

+:.:ise) but not isolable. The kinetic evidence for the di-protonation is so 

strong that it cannot be refuted by the failure to isoiate a di-acid salt. 
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It is Lukashevich's view, furthermore, that although a mono-acid salt is 

formed by a hydrazo compound, the salt will rearrange only under continued 

action of an acid. Thus, the mono-protonated 

being incapable of spontaneous rearrangement. 

transition state for all rearrangements as in 

RNH-iH2F( HS+O 

hydrazo molecule is regarded as 

Lukashevich represents the 

expression 6. The error in these 

. . . . . ..(6) 

conclusions must surely be evident. Suppose we accept Lukashevich's view that 

di-protonation cannot occur. %no-protonation must surely not be a rate- 

determining process. The transfer of a proton between nitrogen and oxygen 

atoms (in aqueous-organic solvents for which the only reliable kinetic data 

are available) is fast. In that case, the transition state shown in expression 

6 is for a reactionwhich is first-order in hydrazo compound and second-order 

in acid. If we accept the addition of the first proton to be fast and re- 

versible (that is, as in equation 2), and also accept Lukashevich's view that 

rearrangement can occur only with the mono-protonated molecule and "only v:hen 

the acid exerts continued action" (l), all of the rearrangements which take 

place in ionizing solvents should be second-order in acid. This situation 

cannot be accommodated with the now well-documented kinetics. If, on the 

other hand, we accept only Lukashevich's view about non-spontaneous rearrange- 

ment and the continued action of acid, the way of achieving first-order acid 

catalysis must be to have the reverse step of equation 2 (the de-protonation) 

much slower than the reaction of the mono-protonated ion with the second proton. 

It is not clear from the article (1) if this kinetic description is what Luka- 

shevich intends, but, in any case it cannot be accommodated with well-docu- 

mented kinetics either. 

The transition state represented by expression 6 represents (as far as 

can be surmized in the absence of a more detailed description) the rate- 

determining involvement of an acid (the hydronium ion) and substrate. The 

reaction described by this transition state should be general acid-catalyzed. 

It is not possible to accommodate the known solvent-isotope effects (4) ,::ith 

this description. 
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Disproportionation 

This reaction is represented by Lukashevich as occurring between two 

mono-protonated hydrazo molecules (equation 7). Suppose, again, that this is 

2RNH-iH2RC1- + RN=NR t 2.R&H3Cl - . . . . . ..(7) 

correct. The rate of mono-protonation of an uncharged hydrazo compound must 

surely be greater than the rate of the bi-molecular reaction of equation7. 

In that case and if equation 7 is correct the disproportionation reaction m;lst 

be second-order in hydrazo compound. This requirement contradicts every 

known case in which the kinetics of hydrazo disappearance has been measured. 

It is well established that rearrangement is first-order in hydrazo compound. 

Some hydrazo compounds (particularly the 4,4(-disubstituted, to which Luka- 

shevich addresses himself) undergo concurrent rearrangement and disproportion- 

ation. ‘i!here the rate of disappearance of these hydrazo compounds has been 

measured, no other than first-order hydrazo dependence has been found. In 

connection with concurrent rearrangement and disproportionation Lukashevich 

states that “an attempt to determine the kinetic order of two parallel reac- 

tions is without justification.n This clearly contradicts the work of Carlin 

and With with e-hydrazotoluene (7). These workers showed that e-hydrazotoluene 

is converted into an o-semidine, e- toluidine and R-azotoluene. The overall 

disappearance of e-hydrazotoluene was first-order in e-hydrazotoluene. How- 

ever. it was shown directly and separately that the fractions of the e-hydrazo- 

toluene being converted into the g-senidine and e-toluidine did not vary during 

the course of a run. It was concluded (justifiably) that the fraction being 

converted into e-azotoluene did not vary with time. Thus, where the three 

products were formed concurrently in relative concentrations invariant with 

time, the conclusion that their formation follov:ed one kinetic law (i.e., 

first-order in e-hydrazotoluene) is valid. I.:ore recently, it has been she-n 

that e-hydrazobiphenyl undergoes concurrent rearrangement and disproportion- 

ation, the disproportionation accounting for 75-88Y~ of the hydrazo compound 

(13). The disappearance of the hydrazo compound was cleanly first-order in 
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hydrazo compound and second-order in acid (above an acidity of 0.0306 ?f,). Here, 

there should be little need to determine the kinetics of the disproportion- 

ation reaction separately. 

In summary, Lukashevich's views on the acid-catalyzed rearrangement and 

disproportionation are inconsistent with reliable kinetic data reported by a 

variety of research groups. :The mechanisms proposed by Lukashevich would en- 

tail ki,letic characteristics completely contradictory of those which are well 

established. 
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